Official Resources
Key Features
- Serverless Architecture: Fully-managed, serverless auto-scaling pods with zero-infrastructure management and Bring Your Own Cloud (BYOC) on AWS & GCP.
- Hybrid Index Types: Dense semantic vectors, sparse lexical vectors via SPLADEv2, and hybrid fusion for comprehensive RAG and metadata search.
- Namespaces & Multi-Tenancy: Logical partitions inside indexes with cross-namespace backup and migration support for multi-tenant applications.
- Backup & Restore: Full snapshot/export via API, console, or Terraform provider with point-in-time restore capabilities.
- Integrated AI Services: Built-in embeddings (OpenAI, Cohere, Gecko, E5), rerankers (SPLADE, cross-encoder), and Pinecone Assistant marketplace plugin.
- MCP Agent Integration: Open-source MCP server enabling agents to list_indexes, upsert, query, and manage indexes directly.
- Enterprise Security: Encryption at rest & in transit, SOC 2/ISO 27001/GDPR/HIPAA compliance, private endpoints, and audit logs.
- Multi-Language SDKs: Python, Node.js, Java, .NET, Go – all updated to API v2025-04 with async clients, sparse support, and integrated inference.
Code Examples
BYOC + Backup Setup
python
import pinecone
pinecone.init(api_key=os.getenv("PINECONE_API_KEY"))
# create index inside your own VPC
pinecone.create_index(
name="byoc-index",
dimension=768,
metric="cosine",
spec=pinecone.ServerlessSpec(
cloud="aws",
region="us-east-1",
project_id="my-gcp-project" # required when BYOC
)
)
# snapshot & restore
pinecone.create_backup("byoc-index", id="backup-2025-07-19")
pinecone.restore_index("byoc-index", backup_id="backup-2025-07-19")
LangChain Integration
python
from langchain.vectorstores import Pinecone
import pinecone, os
pinecone.init(api_key=os.getenv("PINECONE_KEY"))
vectorstore = Pinecone.from_existing_index(
"semantic-index",
embedding=OpenAIEmbeddings()
)
docs = vectorstore.similarity_search("What is Pinecone?", k=3)
Vertex AI RAG Engine Setup
text
# Follow the official notebook to wire Pinecone as the vector store
# inside Vertex AI RAG pipelines.
# Required parameters:
# - index name
# - dimension (768 for Gecko)
# - distance metric (cosine)
#
# Reference: https://cloud.google.com/vertex-ai/generative-ai/docs/rag-engine/use-pinecone
n8n Low-Code Integration
text
# Use the Pinecone Vector Store node in n8n to insert, update,
# or retrieve vectors without writing code.
#
# Available operations:
# - Insert vectors
# - Update vectors
# - Retrieve similar vectors
# - Delete vectors
#
# Reference: https://docs.n8n.io/integrations/builtin/cluster-nodes/root-nodes/n8n-nodes-langchain.vectorstorepinecone/
Use Cases
- RAG pipelines - LangChain, Vertex AI RAG Engine, CrewAI, LangGraph integrations
- Recommendation engines - Hybrid dense + sparse + rerank for e-commerce & media
- Conversational agents - Pinecone Assistant plugin feeds context to LLMs
- Enterprise search - Secure namespaces, audit logs, private endpoints
- Workflow automation - n8n, Zapier, Temporal pipelines trigger vector operations
Pros & Cons
Advantages
- Zero-infrastructure serverless scaling with auto-scaling pods
- Integrated embeddings, rerankers, and backup solutions
- Broad SDK & framework support across multiple languages
- SOC 2/HIPAA/GDPR compliant with enterprise security
- BYOC for data-residency & compliance requirements
Disadvantages
- Metadata field size cap (~5k characters per field)
- Serverless cost can spike at very high QPS volumes
- Hybrid tuning adds complexity to search configuration
- Fully managed - Limited low-level performance tuning
- Single index throughput ceiling requires sharding for scale
Future Outlook & Integrations
- Serverless GA Expansion [H2 2025]: Serverless GA on AWS & GCP with price-optimized tiers
- MCP Ecosystem Growth [H2 2025]: More plugins for CrewAI, LangGraph, Firebase Genkit integration
- BYOC Enhancements [H2 2025]: Terraform modules, private-service-connect on GCP
- Multimodal Support [H2 2025]: Image & audio vector support with CLIP-style embeddings
- Cost Observability [H2 2025]: Usage dashboards and budget alerts for cost management